
Multi/Many-Objective Optimization in Feature Selection

Duarte Côrte-Real Rolim
duarte.rolim@tecnico.ulisboa.pt

Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
November 2017

Abstract—Feature selection, the removal process of non-
essential variables in a dataset, is a crucial step in any machine
learning algorithm since it not only simplifies the model but
also increases the predictor’s performance. However, admitting
that the removal of unnecessary features does not improve
all performance metrics simultaneously, different applications
require distinct classifier’s performance metrics. Additionally, it
might be advantageous to use diverse metrics for the process of
finding good feature subsets.

This work has three major contributions relating to binary
classification using a wide-set of wrapper performance metrics
and multi-class classification dividing it into several binary
sub-problems: firstly, a relationship analysis between wrapper’s
performance metrics is made, comparing and conjecturing which
are made redundant by each other; The second contribution
is a first study on the sets of classifier’s performance metrics’
performance in feature selection, testing if the inclusion of more
than 2 objectives is beneficial; Lastly, a feature selection decision
interface was built, which aids in the solution selection process.

The first analysis shows that less than a handful of the tested
performance metrics for binary classification is not simulta-
neously improved in the feature selection process. Using state
of the art multi-objective algorithms, results suggest a better
performance, in terms of convergence and diversity, of feature
selection when using a high number of objectives in binary
classification, despite some being redundant. In relation to multi-
class classification, only diversity is improved when dividing it
into several binary sub-problems and using accuracy to each one.

Index Terms—Feature Selection; Wrapper Evaluation; Evo-
lutionary Computation; Multi-Objective Optimization; Decision
Interface.

I. INTRODUCTION

Society rapidly evolves into a future where computers will
be able to act and react without being explicitly programmed
to do so. Hence, computers should be able to acquire data and
learn with it, making them suited to predict situations.

Artificial intelligence algorithms are being applied to in-
numerable everyday problems such as social media, internet
security, and market analysis, working in cooperation with
decision makers. These algorithms are usually trained by
example, i.e., data is acquired in order to train a classifier.

Nowadays data collection and storage are available effort-
lessly, allowing researchers and scientists to gather and store
enormous datasets, frequently prioritizing the storage of all
variables, disregarding their importance. There are also appli-
cations where variable relevance is unknown a priori and all
variables end up being collected. Consequently, most datasets
became contaminated with redundant, noisy or simply not
relevant variables. The data collection and storage evolution
was of such magnitude, that only two decades ago a dataset

with more than 20 variables was considered large-scale [1],
while nowadays that designation is used when dealing with
thousands of variables.

Feature selection is the exclusion process of those unnec-
essary variables. Fewer features results in a simpler, more
transparent model, quicker to train and test, and easier to
understand. Additionally, removing redundant and noisy vari-
ables improves performance by increasing the predictive value
of data, avoiding the curse of dimensionality [2].

Feature selection is a complex duty not only considering
the enormous search space for medium-sized datasets, which
makes feature selection an NP-hard problem [3], but also due
to the intricate interactions between features. These interac-
tions might make features useless by themselves be beneficial
when paired with others, and apparently redundant ones can
also be advantageous when combined [2].

Any feature selection algorithm is characterized by two
main traits, a search procedure, and an evaluation function.
The first is simply the operation of searching for promising
subsets, and the latter is how each subset is evaluated.

A. Search Procedure

The search procedure is one of three types. Exhaustive
is the brute-force metric evaluating all 2N − 1 possible
solutions, with N being the total number of features. This
is impractical even for small sized datasets (for example,
N = 20 requires 1048575 combinations). Heuristic search
procedures are straightforward algorithms that respond to
exhaustive’s disadvantage by only trying a maximum of N2

combinations [4]. In each generation, the features yet to be
selected (rejected) are considered for selection (rejection). For
their simplicity and robustness, these methods are undoubtedly
the most used [5]. The colossal search space and intricate
feature interaction suggests that the best option is randomized
methods (also known as meta-heuristics). Its ability to escape
local optimums, a big disadvantage of heuristics, and the fact
that most of this algorithms are population-based, i.e., a single
run produces several solutions, are major advantages. Never-
theless, they’re slower and more complex and considering their
stochasticity, different runs will likely not result in the same
population.

B. Evaluation Function

The process of ranking feature subsets in order to compare
them can be divided into four kinds. The simplest kind, filter,
includes model-free methods that assign a score based on a
statistical value of the dataset to each subset. Despite being

very fast and simple to implement, most of these are unable
to consider the relationship between features, especially when
the rank is for each feature rather for a whole subset. In
wrapper methods, a subset’s score is the performance of a
classifier trained and tested using only the features included
in the subset. These are quite slower because they involve
training and testing a machine, but usually show better results
than filter methods, despite the possibility of over-fitting. The
third type of methods combines the strengths of both filter
and wrapper approaches. A model is trained and tested, but
simultaneously it’s able to understand which features best
contribute to the model’s performance. Therefore the training
and the ranking part of the methods cannot be separated. They
are more complex and heavy than all previously discussed
algorithms, and also more recent. Finally, hybrid methods use
filter and wrapper independently. Firstly, a combination of
filter methods are used to reduce the original set of features,
and then wrapper evaluation occurs to the remaining features
to find the best subset.

C. Motivation and Contribution

Despite slower and more complex, or perhaps as a con-
sequence of it, combining randomized search procedures,
or meta-heuristics, with wrapper evaluation is the most
promising approach to feature selection in the current state
of technology. Randomized search is undeniably the best
approach to successfully explore such an immense search
space, for its stochastic nature and ability to avoid local
optimums, and is known for its high performance in NP-hard
problems. Wrapper approach to feature subset evaluation is
the most reliable one, despite the computational costs, being
the only approach truly reactive to feature’s interactions.

However, not only classifier’s performance should be con-
sidered when choosing between solutions with exact same
performance the one using less features is obviously preferred.
Moreover, different classifier’s applications might require dis-
tinct performance metrics. For example, in an classifier design
to help in the grading process of an exam, a professor might
only want to confirm an A, and therefore only the classifier’s
performance in that grade is a concern. Another professor
might want a more general classifier.

The reasoning behind using several classifier’s performance
metrics is, therefore, twofold: firstly, it’s advantageous to
present the decision makers with several objectives, allowing
them to prioritize and select based on their preferences.
Additionally, using several performance metrics in the search
procedure might allow the algorithm to reach better and more
diverse solutions.

This work’s three main contributions are a deep study
on wrapper’s performance metrics, studying redundancy and
conflicts, followed by a study of whether it’s beneficial to use
several of those metrics in the randomized feature selection
process. Finally, a decision making interface is built to help
the user examine and select one or more solutions among all
offered.

D. Background

Using evolutionary computation in feature selection dates
back to the 80’s [6], but only gained popularity in the last
decade with the ever-growing size of datasets. The advantages
of adding other objectives and using multi-objective algorithm
to tackle feature selection have been a topic for some years,
with most research consisting of stating feature selection
as a bi-objective problem of number of features and some
performance metric such as accuracy. This is true both for
binary classification [7]–[10] and for multi-class classifica-
tion [11]. Advantages of using more performance metrics in
binary classification are suggested by [12], that showed an
increase in performance when using recall and specificity in
comparison to using only accuracy. However, that work as
not been persued and the advantages of using more metrics
were not discussed, despite works such as [13] and [14] using
several objectives for binary and multi-class classification,
respectively.

II. SUBSET EVALUATION

Traditionally, in the field of feature selection, the classifiers
used include decision trees, support vector machines, and k-
nearest neighbours [2], [15]. These classifiers do not have
inherent tacit feature selection techniques such as neural
networks. Decision trees were chosen for exhibiting a great
accuracy/computational time trade-off [16]. Nevertheless, a
classifier in feature selection needs not have exceptional pre-
diction abilities, but merely to be reactive to the features in-
trinsic relationships. CART [17] decision tree implementation
in MatLab was used.

Different datasets were used both for binary, Table I, and
multi-class classification, Table II. All were selected from UCI
repository [18], except for AldoA, which is a confidential
dataset. These have a wide range of features, instances, types
of data and not all are balanced.

TABLE I: Datasets for binary classification.

Name Features Instances % Positives

AldoA 74 1434 89.1
Mushroom 112 8124 48.2

Musk 166 476 43.5
Phishing 68 11055 55.7

Sonar 60 208 46.6
Spectf 44 267 79.4

TABLE II: Datasets for multi-class classification.

Name Classes Features Instances Unbalaced

DNA 3 180 3186 Yes
Pendigits 10 16 10992 No
Satimage 6 36 6435 Yes
Vehicle 4 18 846 No
Vowel 11 10 990 No

Pre-processing of these datasets included normalizing fea-
tures between [−1; 1], eliminating instances with missing
values, expanding categorical variables into several binary

variables, and dividing the data into training and testing sets.
This data division was chosen in detriment of cross-validation
for its simplicity, considering the amount of subset evaluations
to be performed during an evolutionary algorithm. The ratio
used was 75% and 25% for training and testing, respectively,
keeping the training set balanced, i.e., having an equal number
of instances corresponding to each label.

III. METRICS IN WRAPPER FEATURE SELECTION

As mentioned in the introductory section, it’s advantageous
to present several classifier’s performance metrics to the deci-
sion makers so they are able to prioritize a posteriori the ones
they prefer, both for binary and multi-class classification.

Nine metrics were selected for study in binary classification,
detailed in Table III. For the multi-class classification problem,
the hamming loss function, as defined in Equation 1 was
used, where xP is the predicted labels vector, xT is the
target, and D and L are the number of samples and labels,
respectively. Additionally, dividing the problem into several
binary problems and calculating each sub-problem’s accuracy,
as described in [14] was also used. However, considering most
binary sub-problems derived from the division of the multi-
class problem are very unbalanced, recall for each class was
also used.

TABLE III: Binary classifier performance metrics.

Name Formula

Accuracy TP+TB
TP+FP+FN+TN

Precision TP
TP+FP

Recall TP
TP+FN

Specificity TN
TN+FP

F1-Score 2TP
2TP+FP+FN

Kappa 1− 1−po
1−pe

NPV TN
TN+FN

Matthews TP×TN−FP×FN√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

Markdness Precision+NPV − 1

HammingLoss(xP , xT) =
1

|D|

|D|∑
i=1

xor(xi, yi)

|L|
, (1)

However, intuition would suggest that removing unwanted
features from a dataset improves a classifier and therefore all
its performance metrics. Figure 1 is a binary map for Spectf
and Vehicle datasets, where each column represents a feature
and a line a solution. Blue squares indicate selected features.
The solutions presented are the ones that maximize the metrics
mentioned above, of a universe of 30000 randomly generated
solutions, after eliminating duplicate solutions.

It’s evident in Figure 1 that different metrics prefer to-
tally distinct feature subsets, further justifying the need to
present several wrapper’s performance metrics to the decision
maker. Additionally, these results encourage the application of
multi/many-objective optimization in feature selection.

(a) Spectf

(b) Vehicle

Fig. 1: Best solutions’ subsets for Spectf and Vehicle datasets.

There’s a need to study the relationship between metrics, not
only for presentation purposes but also because it’s advanta-
geous for multi-objective algorithms since redundancy might
decrease an algorithm’s performance [19]. The relationships
are pairwise, and can be of three types: independent, if ob-
jectives are autonomous in their optimization, i.e., optimizing
one does not affect the other on; harmonious if objectives
are improved or deteriorated simultaneously; and conflictual
if enhancing one objective the other is imperatively damaged
as a side-effect.

Independent objectives can be optimized separately and
harmonious objectives are redundant and therefore only one
of them must be optimized. Only conflictual objectives truly
justify the usage of multi-objective algorithms, since they
result in a trade-off curve.

To identify these relationships, a quantitative analysis using
parallel coordinates plot was used. The reasoning is that
conflictual objectives have lots of crossings in a parallel
coordinate plot, while independent or harmonious have very
few. In Figure 2 four different solutions are displayed in a
parallel coordinate plot. While objectives 2 and 3 have exactly
the same solution ordering and therefore are harmonious,
solution 1 and 5 only discrepancy is the ordering of the blue
and grey solutions. These should also be, to a certain degree,
considered conflictual.

f
1
(x) f

2
(x) f

3
(x) f

4
(x) f

5
(x)

Fig. 2: Parallel coordinates plot.

For the end of quantifying the degree of conflict based on
the ordering of solutions, Kendall’s correlation was used, as
suggested. Benchmark problems such as DTLZ were tested
to get a threshold value above which two objectives are
considered harmonic. The attained value is Kc = 0.3. Thirty
thousand randomly generated solutions for each dataset were
used, which in most of them represents a very small part
of the search space. The pairwise Kendall’s correlation was
calculated and the averaged results for all binary datasets using
the metrics in Table III are in Figure 3.

The results are dataset dependent, but from the averaged

NaN%

5%

34%

−7%

91%

59%

15%

47%

43%

NaN%

NaN%

−67%

92%

−10%

31%

−26%

47%

48%

NaN%

NaN%

NaN%

−81%

47%

5%

62%

−12%

−12%

NaN%

NaN%

NaN%

NaN%

−22%

20%

−38%

37%

38%

NaN%

NaN%

NaN%

NaN%

NaN%

59%

25%

38%

42%

NaN%

NaN%

NaN%

NaN%

NaN%

NaN%

45%

75%

80%

NaN%

NaN%

NaN%

NaN%

NaN%

NaN%

NaN%

28%

27%

NaN%

NaN%

NaN%

NaN%

NaN%

NaN%

NaN%

NaN%

80%

NaN%

NaN%

NaN%

NaN%

NaN%

NaN%

NaN%

NaN%

NaN%

Acc
ur

ac
y

Pre
cis

ion

Rec
all

Spe
cif

ici
ty

F1
sc

or
e

Kap
pa

NPV

M
at

th
ew

s

M
ar

kd
ne

ss

Accuracy

Precision

Recall

Specificity

F1 score

Kappa

NPV

Matthews

Markdness

−100%

−80%

−60%

−40%

−20%

0%

20%

40%

60%

80%

100%

Fig. 3: Kendall correlation averaged.

TABLE IV: Metrics used in binary classification.

Nr. of Metrics Perfomance Metrics

2 Accuracy
3 Recall, Specificity
6 Accuracy , Recall, Specificity, Kappa, NPV
10 All

heatmap some conclusion can be made. Foremost, the most
conflictual objectives are recall and specificity. Further analysis
can be made not by finding the most conflictual but the most
redundant. For example, markedness and Matthews coefficient
are made redundant by most other metrics. F1-score is highly
correlated to accuracy, and therefore is eliminated, precision
is also made redundant by specificity. NPV is not eliminated,
despite its high correlation value, because it is conflictual
in some datasets. Table IV summarizes the combinations of
metrics chosen for binary classification to analyse in multi-
objective optimization.

The same analysis was done for multi-class classification
using accuracy for each class, with results showing a high
degree of conflict between objectives. Figure 4 shows this for
the Satimage dataset, but same results were obtained for the
remaining multi-class datasets and also using recall for each
class.

Both results encourage the use of multi-objective algorithms
in feature selection, despite some objective redundancy in
binary classification.

IV. SEARCH PROCEDURE

Multi-objective problem formulation is defined in Equa-
tion 2, with contraints gn and hk. The first difference to
single-objective optimization is the existence of two spaces:
design space where the variables [x1, x2, ..., xN] are changed,
and the objective space which yields the result [f1, f2, ..., fM]
[20].

minimize
x

F (x) = {f1(x), f2(x), ..., fm(x)}

subject to gn(x) ≤ 0,n = 1, 2, ..., J,

hk(x) = 0,k = 1, 2, ...,K

(2)

NaN%

22%

−4%

−33%

27%

3%

NaN%

NaN%

−16%

−21%

16%

12%

NaN%

NaN%

NaN%

2%

−14%

−18%

NaN%

NaN%

NaN%

NaN%

−29%

−1%

NaN%

NaN%

NaN%

NaN%

NaN%

14%

NaN%

NaN%

NaN%

NaN%

NaN%

NaN%

Acc
ur

ac
y1

Acc
ur

ac
y2

Acc
ur

ac
y3

Acc
ur

ac
y4

Acc
ur

ac
y5

Acc
ur

ac
y6

Accuracy1

Accuracy2

Accuracy3

Accuracy4

Accuracy5

Accuracy6

−100%

−80%

−60%

−40%

−20%

0%

20%

40%

60%

80%

100%

Fig. 4: Kendall correlation averaged.

Moreover, the global optimal concept of single-objective
optimization is replaced by Pareto optimality. In a bi-objective
problem, if a solution is better in one objective but worse in
the other one, no solution is worse nor better. Instead, these
solutions are non-dominated and together form a trade-off.
Formally, a solution A strictly dominates solution B, when
there’s at least one objective in which A is better while being
no worse in all others [21]. Mathematically A � B, if these
two conditions are met:

1) ∀i ∈ {1, 2, ..., k} : fi(A) 6 fi(B)
2) ∃j ∈ {1, 2, ..., k} : fj(A) < fj(B)

This is defined as weak Pareto dominance, while strong
Pareto dominance (A ≺ B) requires all objectives to be better.
The Pareto front is defined as the ideal trade-off curve.

Considering several objectives in an optimization procedure
is a relatively established field. The most simple methods do
so a priori, that require preference information before the
algorithm’s start and usually combines the objectives or creates
several sub-problems to apply single objective optimization.
These include weighted sum and lexicographic ordering. Inter-
active methods require the decision maker to input preference
during the searching procedure. A posteriori methods only re-
quire information after the searching procedure, finding several
solutions that are then filtered according to user’s preference.
This is obviously the ideal kind of methods, for not limiting
the search space nor having user preference dependency.

A posteriori methods are heavily based on single-objective
optimization ones, differing in the selection mechanism, which
can be either based on Pareto dominance, decomposition or
indicator. Of the three, Pareto dominance based are undoubt-
edly the most well known and used. However, these are well
known for their scalability issues. Increasing the number of
objectives escalates the percentage of non-dominated solutions
in the population, weakening the selection pressure to the
Pareto front. Pareto based approaches convergence heavily
depends on the dominated part of the population, and therefore
have their performance severely deteriorated [22]. Figure 5
illustrates the increasing ratio of non-dominated solutions in
a population as the number of objectives increases, and also

shows that increasing the population size is an effective as a
remedy, although computationally expensive.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Nr. of objectives

0

10

20

30

40

50

60

70

80

90

100

%
 o

f
n

o
n

-d
o

m
in

at
ed

 s
o

lu
ti

o
n

s

 10
 100
 1000
10000

Population size

Fig. 5: Ratio of non dominated solutions depending on the
number of objectives and population size, using numerous
random generated vectors.

This phenomena results in denominating problems with
more than 4/5 objectives many-objective problems [23].

V. METHODS

Considering the previous analysis of wrapper performance
metrics relationships, the combinations considered promising
range from 2 objectives up to 10 in binary classification, and
in multi-class classification these depend on dataset’s number
of classes, ranging from 4 objectives up to 12. Therefore
both multi and many-objective problems are being considered.
Keeping this in mind and the current surveys in this fields
[23]–[25], five different methods were chosen.

1) NSGA-II [26]
2) NSGA-III [27]
3) MOEA/D [28]
4) HypE [29]
5) PICEA-g [30]
NSGA-II is the most well-known algorithm for multi-

objective optimization, for its simplicity and for lacking extra
parameters. It’s a Pareto based method and therefore suffers
from the scalability issues mentioned above. As a response to
those scalability issues, the same authors created NSGA-III, a
decomposition based algorithm which has shown great results
for many-objective problems. However, not always does the
NSGA-III perform better than its ancestor, particularly in the
many-objective knapsack problem [31], which is discrete and
binary-coded, and therefore somewhat similar to feature selec-
tion. MOEA/D, another decomposition based algorithm that
creates several sub-problems, has also become a benchmark
problem for multi-objective optimization, with [32] showing
it frequently outperforms NSGA-II. Additionally, the work in
[30] compared several algorithms (NSGA-III was still unborn)
and found that PICEA-g and HypE had better performance,
the first being also decomposition based, in which there’s
simultaneous evolution of a solutions and a goals population,
and the second is indicator based.

All these algorithms involve a population and therefore a
single run is capable of providing a non-dominated front to
the decision maker. PlatEmo [33] was used for the algorithm’s
implementation in MatLab environment.

A. Algorithms Performance Indexes

A multi-objective optimization algorithm should be evalu-
ated according not only to convergence, but also on its ability
to provide diverse solutions. Consider solutions A and B for
the bi-objective problem illustrated in Figure 6. Solution B is
well converged but its solutions are poorly spread. For that
reason three different indexes were used.

0 1 2 3 4 5 6 7 8 9 10 11
f1

0

1

2

3

4

5

6

7

8

9

10

11

f 2

Solution A
Solution B
Reference Point

Fig. 6: Two example solutions for a bi-objective problem.

Set Coverage: Set coverage is a pairwise comparison
between populations convergence. C(A,B), as defined in
Equation 3, computes the ratio of population in B dominated
by any solution in A. This index is not symmetrical, therefore
both C(A,B) and C(B,A) should be calculated.

C(A,B) =
|{b ∈ B;∃a ∈ A : a � b}|

|B|
(3)

Spacing: Spacing [34], S, is a measure of standard de-
viation between solution’s distance, as described in Equa-
tion 4, where di(A) = mink∈A∧k 6=i

∑M
m=1

∣∣f i
m − fk

m

∣∣ and
d(A) =

∑|A|
i=1

di

|A| . When the solutions are uniformly spaced,
this metric is small, since the distance vectors are similar.
Therefore, unlike set coverage, the intention is to minimize it.

S(A) =

√√√√ 1

|A|

|A|∑
i=1

(
di − d

)2
(4)

Hypervolume: Finally, the well known hypervolume metric
can measure both convergence and diversity. It calculates
the area/volume created by the non dominated front in the
objective space, given an reference point. High value of
hypervolume is synonym of a well-spread and/or converged
solution. Hypervolume computation is simple in a bi-objective
problem, but with increasing number of objectives become
highly demanding.

Table V presents the three metrics values of solutions A and
B of Figure 6.

TABLE V: Indices results to the solutions presented in Fig-
ure 6

Solution Hypervolume Spacing Set Coverage

A 350.50 0.51 1/5 = 0.20

B 362.15 0.61 7/9 ≈ 0.78

B. Benchmark Comparison

To validate the algorithms benchmarks problems were used.
Of DTLZ test suit [35], DTLZ4 and DTLZ7 were chosen,
defying diversity and convergence, respectively. Additionally,
the multi-objective knapsack problem was also used, due to
its similarity to feature selection, being both discrete and
binary-coded. For each benchmark problem M ∈ {2, 4, 10}
were used. The algorithms are stochastic and therefore a
variance analysis is done using box plots. DTLZ4 and DTLZ7
had the expected performance. NSGA-II performed the best
when dealing with M = 2 but increasing the number of
objectives the best algorithms tend to be HypE, NSGAIII, and
PICEA-g. Moreover, HypE showed high performance across
all objectives, similarly to PICEA-g.

The behaviour for the multi-objective knapsack problem
was different, and due to its similarities to feature selection
problem, namely for being discrete and binary-coded, only
these results are shown here. Figure 7 shows the hypervolume
performance, after performing the min-max normalization
described in Equation 5 in relation to each objective.

x′
i =

xi −min(xi)

max(xi)−min(xi)
(5)

It’s visible that for M = 2, MOEA/D performs very well,
closely followed by NSGA-II and HypE. Increasing the num-
ber of objectives, HypE becomes the top-performer. NSGA-III
is inferior across all range of objectives, likely explained by its
decomposition mechanism based on normalisation not being
suited for discrete problems.

2 4 10

Nr of objectives

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
es

iz
ed

 H
yp

er
vo

lu
m

e

HypE
MOEAD
NSGAII
NSGAIII
PICEAg

Fig. 7: Hypervolume comparison for MOKP.

Spacing analysis, in Figure 8, shows that MOEA/D per-
forms the best in terms of solution’s uniformity, except when
M = 10, where HypE outperforms it. Nevertheless, the results

are very similar for all algorithms, except NSGA-II which has
very poor uniformity in the highest dimensional example.

2 4 10

Nr of objectives

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
p

ac
in

g

HypE
MOEAD
NSGAII
NSGAIII
PICEAg

Fig. 8: Spacing comparison for MOKP.

The results of set coverage, being pairwise, are of harder
visualization. Keeping in mind that each bar represents the
domination of that bar’s respective algorithm, it’s visible that
the results are similar to the hypervolume’s. for M ∈ [2, 4]
MOEA/D is the top-performer. However, when M = 10,
HypE performs slightly better. This coincides with the results
in [36].

C. Encoding for Feature Selection
Initial Population, Size and Stopping Criteria

The initial population is a fundamental parameter in an
evolutionary algorithm. In order to motivate genetic operators
to reach solutions with a low number of features in the first
generations, the method used consisted, for each individual,
in generating a uniformly random number K =∈ [1;Nfeat]
and then uniformly choosing K features to be selected. This
ensures a uniformly spread amount of subset sizes.

Population size was set to 100, to both allow diverse popula-
tions and also keep the final population and computational time
manageable. Number of generations was set as the stopping
criteria.

Genetic Operators
All chosen algorithms are genetic based, meaning they use

the typical selection, crossover and mutation operators. Only
NSGA-II and HypE use non-random selection to choose the
parents, and both use binary tournament. The first with rank
level and crowding distance as second criteria, and HypE with
hypervolume-based fitness value of each solution. So they have
no extra parameters.

For the remaining genetic operators, two-point crossover
was used and bitwise mutation, with a mutation probability
of pm = 1

L , was selected.

Constraint Handling
Only two simple constraints exist in feature selection: 1-

each solution is a binary vector; 2- at least one feature must be
included. The first is not infringed using the genetic operators
mentioned, and the second is handled by simply assigning zero
performance and maximum number of features.

HypE MOEAD NSGAII NSGAIII PICEAg

Algorithm

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
et

 C
o

ve
ra

g
e

HypE
MOEAD
NSGAII
NSGAIII
PICEAg

(a) MOKP 2 objectives

HypE MOEAD NSGAII NSGAIII PICEAg

Algorithm

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
et

 C
o

ve
ra

g
e

HypE
MOEAD
NSGAII
NSGAIII
PICEAg

(b) MOKP 4 objectives

HypE MOEAD NSGAII NSGAIII PICEAg

Algorithm

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
et

 C
o

ve
ra

g
e

HypE
MOEAD
NSGAII
NSGAIII
PICEAg

(c) MOKP 10 objectives

Fig. 9: Set coverage behaviour of the algorithms.

Algorithms Parameters

Only NSGA-II and NSGA-III are parameter-free, except for
the usual genetic operators. MOEA/D, HypE and PICEA-g all
have external parameters. MOEA/D’s parameter is the number
of neighbours, i.e., the number of close sub-problems sharing
information. HypE is characterized by the number of samples
used to estimate the hypervolume metric, and PICEA-g uses
the goal’s population size. All these were tested using time,
hypervolume and spacing analysis, for the MOKP.

As the number of neighbours increases in MOEA/D, so
did the computational time in a tiny amount, and the spacing
metric decreased. Hypervolume seemed to remain independent
of the number of neighbours. The decomposition function for
MOEA/D being used is Tchebycheff’s [28].

In both HypE and PICEA-g the main change of the number
of samples and of goals, respectively, is the computational
time, which increases exponentially. Hypervolume slightly in-
creased, and no significant differences in spacing were found.

Considering all this and the suggestions in the literature, the
parameters listed in Table VI were selected.

TABLE VI: Parameters values

Algorithm Parameter Name Value

HypE Nr. of Samples 1000
MOEA/D Nr. of Neighbours 10
NSGA II - -
NSGA III - -
PICEA-g Nr. of Goals 5000

VI. RESULTS

Considering that HypE performed consistently very well in
the multi-objective knapsack problem across all objectives, it
was chosen to test if it’s beneficial to use several wrapper’s
performance metrics in feature selection, i.e., if the algorithm
using more metrics reaches better solutions both in terms of
convergence and diversity.

A. Binary Classification

The four sets of wrapper performance metrics listed in
Table IV were tested in all datasets using 100 generations
composed of 100 individuals, repeated 20 times. The results
are similar in all datasets, and Figure 11 illustrates Spectf
dataset’s performance in terms of hypervolume, spacing and
set coverage. It’s visible that using only accuracy yields
poor performance in all metrics. Moreover, despite M = 6
presenting slightly better hypervolume, both spacing and set
coverage analysis show that the population resulting from
using HypE with M = 10 is more uniformly spread and has
overall better solutions than M = 6.

To visualize these results, the populations resulting from
using mRMR [37], M = 2 and M = 10 are compared
in Figure 10, with evident better performance for M = 10,
reaching “peak solutions“, i.e., solutions that have very high
performance in one objective while being only average in
others.

Accuracy

Precision Recall
Specificity

F1 score Kappa NPV
Matthews

Markdness

1
10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160
166

N
r.

 o
f

F
ea

tu
re

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
er

fo
rm

an
ce

10
2
mRMR

Gen. Nr.

Fig. 10: Musk dataset binary classification feature selection
with three different approaches.

Further study showed that NSGA-II is the algorithm that
performs the best in binary classification feature selection
using M = 10, closely followed by HypE. NSGA-II’s per-
formance might be explained by the high level of redundancy

2 3 6 10

Nr of objectives

9.45

9.5

9.55

9.6

9.65

9.7

9.75

9.8

H
yp

er
V

o
lu

m
e

1015

(a) Hypervolume

2 3 6 10

Nr of objectives

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
p

ac
in

g

(b) Spacing

2 3 6 10

Nr. of Objectives

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
et

 C
o

ve
ra

g
e

2
3
6
10

(c) Set Coverage

Fig. 11: HypE performance in binary classification using Spectf dataset.

between objectives, as shown in Figure 3, which lowers to
value of true conflictual objectives.

B. Multi-class Classification

The same analysis was done in multi-class classification
datasets, using HypE for 100 generations, each composed of
100 individuals in 20 repetitions. The results are also similar
across datasets and are illustrated by Vowel in Figure 13.
The results suggest there’s no major advantage in dividing
the problem into binary subproblems considering spacing and
set coverage metrics, but hypervolume shows improvement.
This result suggests that the population resulting from using
accuracy in each class has a wider presence in the search space.

Similarly to what was done before, Figure 12 compares
mRMR, M = 2 and accuracy to each class in multi-class
classification. It’s visible that using M = 2 and accuracy for
each class have similar performance, but the latter yields a
more diverse set of solutions.

Acc1 Acc2 Acc3 Acc4

1

10

18

N
r.

of
 F

ea
tu

re
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pe
rf

or
m

an
ce

Acc for Each
Hamming
mRMR

Gen. Nr.

Fig. 12: Vehicle dataset multi-class classification feature se-
lection with three different approaches.

Further study suggested HypE to be more adequate for
multi-class feature selection, with PICEA-g as a second
choice. NSGA-II was able to find a diverse set of solutions
but with very poor convergence.

VII. DECISION INTERFACE

Despite the advantages in using several objectives to guide
the feature selection search procedure into better solutions, this
produces a high number of different non-dominated solutions,
making the selection process similar to “finding a needle in
a haystack“. For that reason, and entering the multi-criteria
decision making field, a decision interface was created in
MatLab, which allows the user to set minimum values for
each objective, observe both the search space and the design
space simultaneously, and aids in the selection by finding the
solution which shows higher weighted sum when the weight
vector is specified by the user.

VIII. CONCLUSION

This work’s investigation is a contribution to the necessarily
growing field of feature selection, in an age where data
acquisition and storage is done effortlessly.

In addition to a deep study of the relationships between
wrapper’s performance metrics, where conflictual set of met-
rics were selected, this study has shown great advantages to
the arduous feature selection task when using many objectives,
not only reaching better solutions, i.e., well-converged, but
also yielding a wider set of solutions, capable of describing
all search space and providing many different solutions to offer
to the decision maker.

The result of that process is a big number of trade-off solu-
tions for the decision makers to select. To help in this process,
a decision interface was created to support the decision makers
find the solutions that are most suited for their needs/priorities.

With this work, research is surely motivated. Not only could
these results be tested and verified using other classifiers such
as k-NN or SVM, but also other, more complex datasets. Ad-
ditionally, other metrics could be used, along with other multi-
objective algorithms, in order to find the perfect combination.
Regression problems can be discussed, although possibly not
as many metrics are non-redundant.

Adding flexibility to the decision interface, such as fuzzy
decision making, could also make it an indispensable tool for
any feature selection process.

2 Acc Recall

Nr of objectives

1.64

1.641

1.642

1.643

1.644

1.645

1.646

1.647

1.648

1.649

1.65

H
yp

er
V

o
lu

m
e

1019

(a) Hypervolume

2 Acc Recall

Nr of objectives

0.055

0.06

0.065

0.07

0.075

0.08

0.085

S
p

ac
in

g

(b) Spacing

2 Acc Recall

Algorithm

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
et

 C
o

ve
ra

g
e

2
Acc
Recall

(c) Set Coverage

Fig. 13: Multi-class classification HypE performance with different set of wrapper metrics in Vowel dataset.

Nº of features Acc Pre Recall kappa Spec F1 PPV NPV Mark
44

30

20

10

1

N
um

be
r

of
 fe

at
ur

es

0

10

20

30

40

50

60

70

80

90

100

P
er

fo
rm

an
ce

 [%
]

1 6 9 10 12 13 15 16 17 22 23 25 26 28 31 33 34 35 36 40 41 42 43
0

10

20

S
um

 o
f u

se
s

Reset

Weighted Sum

Fig. 14: Created decision interface.

REFERENCES

[1] W. Siedlecki and J. Sklansky, “A note on genetic algorithms for large-
scale feature selection,” Pattern Recognition Letters, vol. 10, no. 5, pp.
335–347, 1989.

[2] I. Guyon and A. Elisseeff, “An Introduction to Variable and Feature
Selection,” Journal of Machine Learning Research (JMLR), vol. 3, no. 3,
pp. 1157–1182, 2003.

[3] E. Amaldi and V. Kann, “On the approximability of minimizing nonzero
variables or unsatisfied relations in linear systems,” Theoretical Com-
puter Science, vol. 209, no. 1-2, pp. 237–260, 1998.

[4] M. Dash and H. Liu, “Feature selection for classification,” Intelligent
Data Analysis, vol. 1, no. 3, pp. 131–156, 1997.

[5] K. Kira and L. Rendell, “The feature selection problem: Traditional
methods and a new algorithm,” Aaai, pp. 129 – 134, 1992.

[6] W. Siedlecki and J. Sklansky, “A note on genetic algorithms for large-
scale feature selection,” Pattern Recognition Letters, vol. 10, no. 5, pp.
335 – 347, 1989.

[7] L. S. Oliveira, R. Sabourin, F. Bortolozzi, and C. Y. Suen, “Feature
selection using multi-objective genetic algorithms for handwritten digit
recognition,” Proc. Int. Conf. on Pattern Recognition, vol. 1, pp. 568–
571, 2002.

[8] G. Pappa, A. Freitas, and C. A. Kaestner, “A Multiobjective Genetic
Algorithm for Attribute Selection,” Proc. of the Fourth International
Conference on Recent Advances in Soft Computing, pp. 116–121, 2002.

[9] S. M. Vieira, M. C. Sousa, and T. A. Runkler, “Multi-Criteria Ant
Feature Selection Using Fuzzy Classifiers,” Swarm Intelligence for
Multi-objective Problems, pp. 19–36, 2009.

[10] Y. Zhang, D.-w. Gong, and J. Cheng, “Multi-objective Particle Swarm
Optimization Approach for Cost-based Feature Selection in Classifica-
tion,” IEEE/ACM Transactions on Computational Biology and Bioinfor-
matics, vol. PP, no. c, pp. 1–13, 2015.

[11] Y. Zhang, D.-w. Gong, X.-y. Sun, and Y.-n. Guo, “OPEN A PSO-based

multi-objective multi- label feature selection method in classification,”
Scientific Reports, no. August 2016, pp. 1–12, 2017.

[12] J. Garcia-Nieto, E. Alba, L. Jourdan, and E. Talbi, “Sensitivity and speci-
ficity based multiobjective approach for feature selection: Application
to cancer diagnosis,” Information Processing Letters, vol. 109, no. 16,
pp. 887–896, 2009.

[13] M. Pal and S. Bandyopadhyay, “Many-objective Feature Selection for
Motor Imagery EEG Signals using Differential Evolution and Support
Vector Machine,” 2016.

[14] A. Khan and A. R. Baig, “Multi-Objective Feature Subset Selection
using Non-dominated Sorting Genetic Algorithm,” Journal of Applied
Research and Technology, vol. 13, no. 1, pp. 145–159, 2015.

[15] F. Jimenez, E. Marzano, G. Sanchez, G. Sciavicco, and N. Vitacolonna,
“Attribute selection via multi-objective evolutionary computation applied
to multi-skill contact center data classification,” Proceedings - 2015
IEEE Symposium Series on Computational Intelligence, SSCI 2015, vol.
07821, pp. 488–495, 2016.

[16] B. Huang, B. Buckley, and T. M. Kechadi, “Multi-objective feature
selection by using NSGA-II for customer churn prediction in telecom-
munications,” Expert Systems with Applications, vol. 37, no. 5, pp. 3638–
3646, 2010.

[17] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, “Classification
and regression trees,” vol. 1, no. February, p. 368, 1984.

[18] M. Lichman, “UCI Machine Learning Repository,” 2013.
[19] R. C. Purshouse and P. J. Fleming, “Conflict, Harmony, and Indepen-

dence: Relationships in EvolutionaryMulti-Criterion Optimisation,” vol.
4403, pp. 388–402, 2007.

[20] C. A. Coello Coello, G. B. Lamont, and D. a. V. Veldhuizen, Evolution-
ary Algorithms for Solving Multi-Objective Problems, 2007.

[21] K. Deb, “Multi-Objective Optimization Using Evolutionary Algorithms,”
p. 497, 2001.

[22] H. Ishibuchi, N. Tsukamoto, Y. Hitotsuyanagi, and Y. Nojima, “Ef-
fectiveness of scalability improvement attempts on the performance of
NSGA-II for many-objective problems,” Proceedings of the 10th annual
conference on Genetic and evolutionary computation - GECCO ’08, p.
649, 2008.

[23] S. Chand and M. Wagner, “Evolutionary many-objective optimization:
A quick-start guide,” Surveys in Operations Research and Management
Science, vol. 20, no. 2, pp. 35–42, 2015.

[24] C. Von Lücken, B. Barán, and C. Brizuela, “A survey on multi-objective
evolutionary algorithms for many-objective problems,” Computational
Optimization and Applications, vol. 58, no. 3, pp. 707–756, 2014.

[25] A. Zhou, B.-Y. Qu, H. Li, S.-Z. Zhao, P. N. Suganthan, and Q. Zhang,
“Multiobjective evolutionary algorithms: A survey of the state of the
art,” Swarm and Evolutionary Computation, vol. 1, no. 1, pp. 32–49,
2011.

[26] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

[27] K. Deb and H. Jain, “An Evolutionary Many-Objective Optimiza-
tion Algorithm Using Reference-point Based Non-dominated Sorting

Approach, Part I: Solving Problems with Box Constraints,” Ieeex-
plore.Ieee.Org, vol. 18, no. c, pp. 1–1, 2013.

[28] Q. Zhang, S. Member, and H. Li, “MOEA / D : A Multiobjective
Evolutionary Algorithm Based on Decomposition,” vol. 11, no. 6, pp.
712–731, 2007.

[29] J. Bader and E. Zitzler, “HypE: an algorithm for fast hypervolume-based
many-objective optimization.” Evolutionary computation, vol. 19, no. 1,
pp. 45–76, 2011.

[30] R. Wang, R. C. Purshouse, and P. J. Fleming, “Preference-Inspired
Coevolutionary Algorithms for Many-Objective Optimization,” vol. 17,
no. 4, pp. 474–494, 2013.

[31] H. Ishibuchi, R. Imada, Y. Setoguchi, and Y. Nojima, “Performance
comparison of NSGA-II and NSGA-III on various many-objective test
problems,” 2016 IEEE Congress on Evolutionary Computation, CEC
2016, pp. 3045–3052, 2016.

[32] H. Li and Q. Zhang, “Multiobjective Optimization Problems With
Complicated Pareto Sets, MOEA/D and NSGA-II,” IEEE Transactions
on Evolutionary Computation, vol. 13, no. 2, pp. 284–302, 2009.

[33] Y. Tian, R. Cheng, X. Zhang, and Y. Jin, “PlatEMO: A MATLAB
Platform for Evolutionary Multi-Objective Optimization,” pp. 1–20,
2017.

[34] J. R. J. R. Schott, “Fault tolerant design using single and multicriteria
genetic algorithm optimization,” 1995.

[35] K. Deb, L. Thiele, M. Laumanns, E. Zitzler, A. Abraham, L. Jain, and
R. Goldberg, “Scalable test problems for evolutionary multiobjective
optimization,” Evolutionary Multiobjective, no. 1990, pp. 1–27, 2001.

[36] H. Ishibuchi, Y. Sakane, N. Tsukamoto, and Y. Nojima, “Evolutionary
Many-Objective Optimization by NSGA-II and MOEA / D with Large
Populations,” Optimization, vol. 1, no. October, pp. 1758–1763, 2009.

[37] H. Peng, F. Long, and C. Ding, “Feature selection based on mutual
information: Criteria of Max-Dependency, Max-Relevance, and Min-
Redundancy,” IEEE Trans. on Pattern Analysis and Machine Intelli-
gence, vol. 27, no. 8, pp. 1226–1238, 2005.

	Introduction
	Search Procedure
	Evaluation Function
	Motivation and Contribution
	Background

	Subset Evaluation
	Metrics in Wrapper Feature Selection
	Search Procedure
	Methods
	Algorithms Performance Indexes
	Benchmark Comparison
	Encoding for Feature Selection

	Results
	Binary Classification
	Multi-class Classification

	Decision Interface
	Conclusion
	References

